
UK 531.011 

ON THE LOWERBOUNDG OF DISTANCE BETWm BODIES 

IN THEUNRPSTRICTED THREE BODY PRXLEM 

PMM Vol. 41, N-“4, 1977, pp. 609- 617 

V. G. GOLUBEV 
(Moscow) 

(Received September 14, 1976) 

A method is proposed for the determination of the lower bound of distances 
of a pair of fixed bodies from a third body in the case of negative constant 

of the energy integral, when sufficient conditions of the Hill absolute sta - 

bility of motion of the pair of bodies are assumed to be satisfied. 

1. Statement of the problem, The unrestricted Newtonian problem of 

three points (bodies) P,, P,, and P, of mass ml, m,, and m3 , respectively, is consi- 
dered in a system of coordinates whose origin lies at the baricenter (the center of mass 
of the set of three points). It is assumed that the constant vector C of the moment of 

momentum is nonzero, i. e. C = 1 C 1 > 0. The case, most interesting from the ap- 
plication point of view, of h < 0, where h is the constant of the energy integral 
T = u f h ( T is the kinetic energy and u the force function) is analyzed. 

When c > 0 triple collisions are impossible. According to Sundman (see, e. g., 

[l]) a mathematical solution of the problem exists for - 00 < t < + 00 ( t is the 

time) , in spite of the possibility of dual collisions. Sundman’s statement about the lo- 

wer boundedness of the positive constant of perimeter AP,P,P, when C > 0 is also 
important. It should be noted, however, that his theory is particularly complicated , 
while the estimates are nevertheless quite coane ; the latter may be due to the consi - 

derable generality of the case considered by him. 
In the present paper the lower bounds for two (out of three) relative distances r’jk 

between the bodies, analogous to Sundman’s lower bounds, are derived comparatively 

simply by using a supplementary assumption described below. 
To explain the essence of that supplementary assumption we introduce the neces - 

sary notation and definitions. We present the energy integral in t’he form T = u- h’, 
where h = - h > 0 because of the assumption that h < 0 . Note that T > 0, 
since owing to C > 0 it cannot vanish. Hence always U > h’. We introduce the 
relative masses of bodies pi = mj / M, j := 1, 2, 3, and il!l = ml -k m2 d- m3; 
evidently 0 < pi < 1 and & -/- ps + p3 = 1. Then the force function 

where f is Newton’s gravitational constant. Since U > h’ , we always have 

(1.1) 

62‘2 
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We separate one of the three pairs of bodies and denote its bodies by PI and P, 
such that fJ1 > cd,, which can be evidently obtained by a suitable numbering of these, 
Let 0,s be the center of mass P1 and P,, We set r = OrsPa and ‘p = I” / rlz, where 
r and p define the absolute and the relative distances of body p, from the pair P, 

and Pa (only at the instant of collision of P, with P, , p = + CO ) . In what follows 
we shall need the following notation : 

h PlP2 
=-GG-’ v = P3 (IL1 + pa) 

P 
p,o,2 kz =x=-----t Oda FL1 

IL1 + P2 
q=plpz=----- 

PlS Pa 

Note that 0 < p < q < 1. and p f q = 1. 
The system moment of inertia 1 relative to the baricenter can now be expressed 

by the formula 

I= mrl:2 r-T2 + nS @&+ mz’ ra = M&i (p), i (p) = h + vp2 

It was shown in [Z] and proved in [3] that when r > arks > pr,,, i.e. when 

P>cl>P, 

In other words , the quantity U for given r,, > 0 and p > q > p attains its 
maximum when Ps lies on the straight line PrPsoutside a like segment beyond point 

p2. 

On the basis of the remark about the numbering of bodies we attribute the following 
two definitions to the pair PI and P,. 

Definition 1. 1 (see [2, 4, 53). The motion of a specified pair of bodies P, 

and P, is called Hill stable if at all times rr2 < H, where N > 0 is some con- 

stant . 

Rem ark 1. 1. The inequa~ty (1.1) does not by itself imply the existence of 

even a single pair (out of three) whose motion is Hill stable. 

Definition 1. 2 (see [S] ), The motion of the pair P, and P2 is called abso- 

lutely Hill stable, if at all times p >I p*, where p* is some constant such that 

P*>9>P* 

Remark 1.2, The absolute Hill stability implies simply the stability of mo - 
tion of P, and Pa and, also, the impossibility of collisions for other pairs of bodies 

(the first follows from the definitions and inequality (1.1) and the second, from the 
definition 1.2 and the impossibility of triple collisions when C > 0 1. 

Below we assume that the motion of the specified pair PI and P, is absolutely Hill 

stable. This property of motions is ensured by the fulfilment of corresponding sufficient 
conditions, Before formulating these conditions we shall explain the prerequisites of 

these. 
For p >.q > p from the inequality IT > 1/&‘2, i. e, 1 (U _ jj,‘) > i/.$2, 
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we have I (U, - h’) > ~jeC2, hence IU,2 > 2h’P. 
We introduce the notation 

8, (P) = i (p) u,~ (p), 
Zk’C2 

s = - f‘LM5 

(it is expedient to call the dimensionless constant s the Hill stability index), The 
last of inequalities can then be written as ,S, (p) > s. Along (q, + co) function S, 
(P) attains its absolute minimum (s+)_ at some point, whose position is determined 

by the known fifth power algebraic equation, to the left of which the function decrea- 
ses and to the right of it it increases. Hence for s > (s.,.)_ equation s+ (P) = a 
has two roots on (4, + 00). If p* is the greater of these then p > p* is one of the 
solutions of the inequality S, (p) > s. 

Theorem (see [Z, 3 t 51). Assuming that s > (s,)_ and p* is the greater of 
the two roots of equation 8, (p) = s ) and that at the initial instant t, p (to) > p* , 
we have always p > p*. 

In what follows the conditions of the theorem are assumed to be satisfied without 

further stipulation. 

Remark 1.3. Since p* belongs to (q, + co), p* > q and the inequality pap* 
imply by virtue of definition 1.2 the absolute Hill stability of motions of P, and P,. 

Examples. Let us consider the problems of Sun (PI) -Jupiter (P,) - Saturn 

(Ps) and of Sun (Pr) - Earth (Pz) -Jupiter (P3) with initial conditions for the epochs 

November 11, 1966 and January, 0, 1930, respectively (in each problem the “Solar 
system” is assumed to contain only two planets, and in the second problem the mass of 
Earth is taken as the sum of masses of the Earth and Moon). 

On these assumptions in the first problem always p > 1.319, and in the second P > 

2.585. Since in each case 0 < ‘1~ I the inequalities defining p show that in the first 
problem the motion of the pair Sun -Jupiter and in the second that of Sun - Earth are 

absolutely Hill stable. 
The following simple statement will be used repeatedly below. 

Lemma 1. 1. On assumptions indicated above always r > 0. 

Proof. At the instant of collision between P, and P, when r,2 = 0 clearly ~70; 
since r = o’implies a triple collision which is impossible because C > 0. If r12 > 0, 
from the inequality F i rlz >, p* > 0 we again have r > 0. 

2, Derivation of ths differentl&l inequality for r(t). Thedee- 
vation for the quantity f (t) of a differential inequality of the form f” > ‘P (r) 
makes it possible to obtain for r (t) a constant positive lower bound from which similar 
lower bounds follow for distances rls and rs3 Derivation of differential inequalities 

is more complicated than that of differential equations, since it is necessary to elimi - 
nate “extraneous” variables using the method of estimates. In that process the most la- 
borious is the proof of Lemma 2.2. The approximate solution of inequality (2.16) is 
derived by an unusual method of successive approximations (corollaries 2,2 - 2.4). 

Lemma 2.1. Let the motion of mass point J be defined in the inertial system 

of coordinates Ozyz and r = OJ, with r = 1 r 1, v the velocity of the point, u = 
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1 v 1, a is the acceleration, a, is the projection of a on the r-direction, I= [I’ 
X v], and i = 11 1. Then 

.I 
F = a, + P/r9 (2.1) 

The proof is based on the identity 

ve=r--+-l=/rs (2.2) 

Differentiating the relationship id = 9 + us + zs twice we obtain 

r-z-’ = xx* + yy’ + 22’ 
r*s + rr” = Ya + ra = Va + r (are) = v2 + TUr 

where r0 is the unit vector of vector r, from which 

(2.3) 

Now (2.1) follows from (2.3) and (2.2). 

Corollary 2. I, If m is the mass of point], L = fr X (mv)l,andL=j L I, 
then 

. . La 
r =a,+w (2.4) 

In fact, L = ml, L = ml, and t = L f n. 
For obtaining the differential inequality for r (t) it is expedient to pass to Jacobi 

coordinates in the three body problem, Let rla = (xls, glar z,,) be the vector which 
defines the relative position of P, to P, and r = (x, y, z} be the position of P, 
relative to 0,s. The related Jacobi equations can be considered as equations that defi- 
ne the motion of two fictitious mass points JIa and J of mass rrzrs = hM and m = 
VM , respectively. The notation in Lemma 2.1 and Corollary 2.1 fit the second 
Jacobi point, and by analogy, the symbols of corresponding quantities for the first point, 
such as ‘is, r12*, liar Z19, Lx2, and &a, are natural. 

It will be shown below that in Eq. (2.4) for J the inequalities a,. < 0 and L > 0 
are (strictly) valid. Hence for the derivation of the inequaltty of the form F” > Cp (r) 
it remains to obtain for a, ( 0 the negative lower bound, and for L > 0 the positive 
lower bound both of which depend only OR f . 

Lemma 2. 2. The estimate 

a,>---$-, K = fMP*2 [ tp* P q)% + (P* : PIa 1 (2.5) 

is valid. 
Pro of. In the notation used here the equations of motion of the second Jacobi 

point are of the form 

x’. = - fMx(~+$)+fMw&$-$7) (2.6) 

(the right - hand side of equation for 6r” is obtained from the above by substituting I 
for x and & for xrs , and similarly for z” ). 
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We denote by 6 the angle between vectors rr2 and r (0 < 6 < n) and set o = 

toe 6 (- i < 0 < 1). We have a, = ar’ = 5” (x / r) + y” (y / r) + Z” (Z / r). From 

this and Eqs (2.6) 

a,.=-fM r [( 
Taking into account that from AP,012P, and AP,O,,P, 

r13 2 = r2 + p2rlz2 + 2pr,,ro, r23 
2,2 r + q2r,,* - 2qr,,rw 

we can write 

(2.7) 

up = - fMG (a), G (0) = 
P (r - qrl20) 

r233 
+ 

9 (1. + Prl2w) , o 

7-2 
(2.8) 

Remark 2. 1. We assume that r12 # 0 (r12 > 0); it will be readily seen that at 
the instant of collision of P, and P, the inequality (2.5) is strict, since p + -!- ~0 

when r12 -_) 0. That G (0) > 0 is implied by r - qr,,o > 0 and F i- pr,,o > 0 by 

virtue of P > P* > Q > P; for example, F - qr120 > r - qr12 = r12 (p - q) > r12 (p* 
- q) >O. 

It remains to determine with the use of (2.8) the highest value of function G (w) 

in [- 1, i] for constant positive r12 and r , and for r13 and rz3 that depend on 0~ 

inconformity with (2.7). From (2.7) we have 

r13’ (0) = $$-, r23’ (a) = _ y (2.9) 

The differentiation of (2.8) with allowance for (2. 9) yields 

G’ (0) = Pqrl2 
1 

[- 
r + m20 - 

213’ )l r13~ _ 
(2.10) 

From which, taking into account (2.7) 

G’ (0) = + pqr12 
3 (r2 - q+,s2) _ 

r23s 1 [ 1 I 3 (r2 - P2F122) 

r13s r13b I> (2.11) 

where, owing to p > q 2 p , the quantities in parentheses are positive and, what is 
important, independent of o. When w increases from -1 to 1, r13 increases and 

r23 decreases. Hence each fraction and, consequently, the whole expression in the first 

set of brackets in (2.11) increases, while the fractions and the complete expression in 
the second set of brackets decrease. Consequently G’ (o) increases, and the equation 
G’ (0) = 0 can have only one root o * in the interval (- 1,i) , and G’ (w) <0 when 

-4 <<<<o* and G’ (0) > 0. when o* < o < 1. This implies that G (0) can have 
in (- 1,1) only one extremum which is a minimum. Hence the maximum value of 
function G (0) along segment [--I, I] (which exists since that function is there conti - 
nuous) is obtained at one of the ends of that segment. 

We have r13 (k 1) = F + pr12 and 7i3 (+ 1) = F T qr13. Hence by formula (2.8) 

G(*lF)= (FT:r12)2 + (r *“pr12)2 

G (1) - G (- 1) = 4pqr12r 
1 1 

(r2 - q2r12Y2 - ( F2 - p2F122)2 1 
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But 0 <r= - qsrpaa < r2 - p2r12B (since p < q.) , hence G (I) - G (- 1) > 0. 
Consequently G (a) 6 G (4) and according to (2.8) 

ar& -fMG(i)= -$-g(p)* g(P)=P2 1 
(2.12) 

But in (9; + 00) 

f(P)‘2R?P 1: 1 1 
(p+p)8 - (p_q)s 1 co 

which implies that function g (p) in (q, + 00) and in particular in (p*, + =) decreases, 

Hence ar > - fMg (pi) I r* which yields (2.5). 

Lemma 2.3. Let 

Then 

(2. 13) 

(2.14) 

PI o of . Since P and Q are positive constants, it is necessary to prove only the 

inequality Q I P < &. First we shall prove that by the basic theorem (see Sect. 1) 

a+ (P*) < &X (2.15) 

In fact* * = s+ (P*) I= f (P3 ui-a kd = (A + w*‘9 Uca W > &u+~ (p3 from 
which follows (2.15). We recall that s = 2h’C2 / ($@). Then by formulas (2. 13) 
and inequality (2.15) 

Q A- fM2 “Vv’a .,/-% us tp*j L= V%;;(P~) 
P-- f%? C<C 

We pass to the problem of determining the lower bound of quantity & (depending 

on r ) (see the text between Lemmas 2.1 and 2.2 above). 

Lemma 2.4. Let I,( C. Then 

(2.16) 

Pro of. Jacobi equations (the motion of two fictitious points) contain integrals of 
energy and areas which are obtained from the integrals in baricentric coordinates by 
transformation to Jacobi variables, with the constants h’ and C retaining their values. 

Using the energy integral we obtain the following obvious expression for the doubled ki - 

netic energy of the system of two Jacobi points: 

2(U-h’)=1M(~1s*s+~)+YIN(r.s+$) 

Byvirtueof Zr, = L,, f(~~} and 1 = L !(vM) wehave 

2tu’, (2.17) 

2 fMJ 
C -y-wifpf-h’ Z+$+$&- I 

where allowance is made for U 6 U+ = fM%,,-l u+ (p) = fM%--$m+ (p) because p Za 
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p* > q. In (q, + co) and in particular in [p+, + 00) function u+ (p) decreases so that 

u+ (P) < n+ (p+) when P 2 P,. S~engthen~g the second of inequa~ti~ (2.17) and then 
multiplying it by hvMr2 > 0, we obtain 

2hvMr [fkPpu+ (p*) - h’tl > vp*Li,a + h~2 (2.18) 

From the integral of areas L,, + L = C follows that C = 1 C 1 = 1 L,, + L I< 1 L,, 1 

+ILl=&,+L, i.e. 

L,, + L >, c (2.19) 
. 

By stipulation L ( C, which with (2.19) yields 

Liz* > (C - L)a > 0 (2.20) 

From (2.18) and (2.20) 

v (C - L)2p2 - 2hvfM3u+ (pa) rp + h (L2 + 2vMk’ra) < 0 

Such quadratic inequality with respect to p is only possible when the discriminant of 

its left-hand side is nonnegative. Hence 

h%*plM*u,~ (p*) r-2 - li;v (a - L)* (La + 2vMh’+) > 0 

The last inequality, after its division by Iv and with allowance for the notation in 

(2.13), yields (2.16). 

Corollary 2.2. The inequality L > 0 is strictly true. 

Let on the contrary L = 0 ( C. Then from (2.16) C2P2ra < Q2ra. Since by 
Lemma 1. I r > 0, hence Cap2 < Q” and Q I’ P > C which contradicts (2.14). 

We have to assume that L > 0. 

Corollary 2.3. Let 
A-C - QIP (0 < A < C) (2.21) 

(in establishing the inequalities for A allowance is made for (2.14)). The strict in - 

equality L > A is true. 

In fact, if L > C, thenL > AsinceC >- A. Let nowL ( C.F_rom (2.16), ta- 
king into account that L >O , we obtain(C - L)apZra < Qsrs,(C _ L)apa ( Qa, 

O<C-Lc-Q/P, and L>C-Q/P = A. 

Corollary 2.4. The following strict inequality is valid: 

(2.22) 

which is obvious when L > C . Let L < C , then from (2.16) we have (C - Lj2 < 
Q2r2 / ( A2 + P2r2), since L > A . Extracting the square root from both sides of the 
last inequality and taking into consideration that C - L > 0, we again have (2.22). 

From (2.4), (2.51, and (2.22) with allowance for m y= YM we immediately 
obtain the following lemma. 

Lemma 2.5. The following strict inequality is true: 

r”> cp (r), c - s K -- 
j-2 

(2.23) 
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where the constants K, P, Q, and A are defined by formulas (2.5), (2.13) , and (2.21). 

3. UIM of thr diffatentlrl inequality for r(t). 
Lemma 3. 1. Thereexists in the interval 0 < r < +cc an r. such that 

cp (r-) > 0 when 0 < r < ro, rp (ro) = 0, and cp (r) < 0 when r > ro. 

Proof. We have 

a 
- v2Mzh-r (3.1) 

It will be readily seen that in (0, + 00) , ‘pl (r) is a decreasing function, to wit, it de- 
creases from C” > 0 to - CO when r varies from 0 to + CO. This remark and the 

first of formulas (3.1) make the lemma obvious. 

Theorem 3. 1. Any maximum of function r (t) is strictly greater than ro. 

Proof. Note that according to Sundman function r (t) is fairly smooth in spite 

of possible instants of collision between P, and P,. Let function r (t) reach its maxi - 
mum P, at some instant tl with r, < r. contrary to the statement of the theorem. 

Then r’ (tr) = 0 and r” (tr) < 0. But by Lemma 3.1 cp (r,) > 0 and according to 
(2.23) r” (tr) > 0. This contradiction proves the theorem. 

Examples. In the problems Sun (Pi) -Jupiter (Pz) -Saturn (Ps) and Sun (Pi) - 

Earth (Pz) -Jupiter (Ps) any maximum of function r (t), i.e. the distances of P, from 
the center of mass of P1 and P, are greater than 6.412 a.~. and 5.045 a.~. , res - 

pectively ( a.u. denotes the astronomical unit). 
Let us now consider in (0, +w) the function 

q(r) = &+$&lnvA2~pa,a - (3.2) 

Obviously 

2K 4CPQ --- I/A” + PBrn _ ,l 
r vaM2Aa Pr > 

!%+(I) = + 00, lim q(r) = 0 (3.3) 
r4+CG 

It is not difficult to verify that 

9’ (r) = - 2q (r) (3.4) 

Lemma 3.2. In the interval 0 < r < r,, function 9 (r) decreases and in the 

interval r. < r < + 00 it increases, reaching its negative absolute minimum at 

point r. . The equation 1c, (r) = 0 has a single root r* which belongs to the inter - 

val (0, ro) , and the function $ (r) > 0 when 0 ( r < r*. and $ (r) < 0 when 

r,<r<+=. 
Lemma 3. 3. The quantity 

R = r”2 + 1c, (r) 

varies in conformity with r, it increases with increasing 

creasing r , and attains the same kind of extrema as r 

(3.5) 

r and diminishes with de- 

. 
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Lemma 3.2 follows from (3.4), Lemma 3.1 and (3.3), while Lemma 3.3 fol - 
lows from (3.5), (3.4), and (2.23). 

Theorem 3. 2. Let at the initial instant t,, r (to) > r+ and R (to) < 0. 
Then always 7 (t) > ?‘*. 

Proof. For the initial moment the statement is true by stipulation. Let us prove 

its validity in the interval to < t < + oo by assuming the contrary. Then, owing 
to the continuity of r (t) there must exist an instant t, > to such that r (t,) = T+, 

and r (t) > r* when t,, \r t < tl . The definition of derivative (if At < 0 is assu - 
med) implies that r’ (t) < 0 (2.23) implies that r” (tJ > cp (r*) > 0, since 0 < 

r* < r,. These two facts imply the existence of a 6 > 0 such that r’ (t) < 0 when 

t,-- 8 < t < t1. There are only two possibilities: a) that r’ (t,) < Owhen - oc 
< t < t, (in particular when t, < t ( tl), and b) that there exists an instant ta < 

ti such that r’ (t,) = 0 and r’ (t) < 0 when t, < t < t,. 
Case a). By Lemma 3.3 R (t,) < R (to) < 0, i.e. R (t,) ( 0 But by (3.5) 

R (ti) = To2 (ti> + V (r+) = r-2 (t,) > 0 (a contradiction). 

Caseb). By Lemma3.3 R (t,)< R(t,) = r’“(t,) +$ fr(tz)l=lC,[r(tz)l<O 

(since z- (t,) > r (tJ = r* ) ) i, e. I? (tJ ( 0. But by (3.5) we have again R (tJ 
> 0 ( contradiction). 

These two contradictions prove the validity of the theorem for (t,, +oo). The proof 

for f --00 , t,) is similar, 

C or o 11 a r y 3. 1. When the conditions of the theorem in Sect. 1 and of Theorem 

3.2 are satisfied, then always 

(3.6) 

First we point out that the multipliers in parentheses in (3.6) are strictly positive be - 

cause ph > 4 > p, Estimates (3.6) follow from the inequalities for AP,O,,P, 
and AP,O,,P, 

r13 > r - prlz = (1 - P 169 r > (1 - P / kJ h 

rz3 > r - qrlz = (1 - 9 1 PI r > (1 - 9 i PA r* 

Examples. In the problem Sun (Pr) -Jupiter (P,) - Saturn (Ps) always r> 3.756 

a.u. (any maximum of r (t) > 6.412 a.~.), rt3 > 3.753 a.~. , and rz3 > 0,912 a.~. 
In the problem Sun (PI) - Earth(Pd -Jupiter (Ps) always r > 2.532 a.~. (any maximum 

ofr(t)>5.045 a.&), r,s >2.532a.u., and r,,>1.553 a.~. 
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